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Abstract 

The knowledge of potential impacts in climate change on terrestrial vegetation is 
crucial to understand long-term global carbon cycle development. Discrepancy in data 
has long existed between past carbon storage reconstructions since the Last Glacial 
Maximum by way of pollen, carbon isotopes, and general circulation model (GCM) 
analysis. This may be due to the fact that these methods do not synthetically take into 
account significant differences in climate distribution between modern and past 
conditions as well as the effects of atmospheric CO2 concentrations on vegetation. In 
this study, a new method to estimate past biospheric carbon stocks is reported utilizing 
a new integrated ecosystem model (PCM) built on a physiological process vegetation 
model (BIOME4) coupled with a process-based biospheric carbon model 
(DEMETER). The PCM was constrained to fit pollen data to obtain realistic estimates. 
It was estimated that the probability distribution of climatic parameters, as simulated 
by BIOME4 in an inverse process, was compatible with pollen data while DEMETER 
successfully simulated carbon storage values with corresponding outputs of BIOME4. 
The carbon model was validated with present day observations of vegetation biomes 
and soil carbon, and the inversion scheme was tested against 1491 surface pollen 
spectra sample sites procured in Africa and Eurasia. Results show that this method can 
successfully simulate biomes and related climates at most selected pollen sites 
providing a coefficient of determination (R) of 0.83 to 0.97 between the observed and 
reconstructed climates, while also showing a consensus with an R value of 0.90 to 
0.96 between the simulated biome average terrestrial carbon variables and the 
available observations. The results demonstrate the reliability and feasibility of the 
climate reconstruction method and its potential efficiency in reconstructing past 
terrestrial carbon storage. 
Keywords: terrestrial carbon storage, biome model, inverse model, BIOME6000, 

pollen biome scores 
 
1. Introduction 

Ice core measurements reveal that CO2 concentrations in earth’s atmosphere have 
exhibited large variations over glacial-interglacial cycles (Siegenthaler et al., 2005). 
There is little doubt that oceans were primarily responsible for reducing CO2 levels 
during glacial phases (Siegenthaler and Wenk, 1984; Martin, 1990; François et al., 
1998; Joos et al., 2004). However, paleoecological data has shown that the 
distribution and composition of terrestrial ecosystems during the Last Glacial 
Maximum (LGM) were significantly different from current conditions, and changes in 
global vegetation patterns continued throughout deglaciation periods and into the 
Holocene epoch (Prentice et al., 2000). Changes to terrestrial biospheric carbon stocks 
and those fluxes related to them may have played a role in determining atmospheric 
CO2 concentrations during the past 21 ka (Adam et al., 1990; Prentice et al. 1993; 
Indermuhle et al., 1999; Kaplan et al., 2002; Joos et al., 2004). Therefore, quantitative 
estimates of terrestrial ecosystem carbon stocks since the LGM are required to narrow 
uncertainties in the global carbon cycle inventory from this time period (Adam et al., 
1990; Prentice et al. 1993; François et al., 1998; Peng et al., 1998a; Indermuhle et al., 
1999; Kaplan et al., 2002; Joos et al., 2004).  
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There have been many attempts to estimate terrestrial carbon storage variations 
between glacial and interglacial environmental conditions. One method uses 
palynological, pedological, and sedimentological proxy data to map the distribution of 
vegetation types and to estimate stocks by assuming that the average carbon density in 
each biome is the same as observed conditions today (Van Campo et al., 1993; 
Crowley, 1995; Adam et al., 1990, 1998). This estimate is solely dependent upon 
vegetation or biome type and does not vary geographically for specific types under 
different climatic conditions and atmospheric CO2 levels, which may lead to 
substantial errors during glacial-interglacial periods (Esser and Lautenschlager, 1994; 
François et al., 1998; Kaplan et al., 2002; Joos et al., 2004).  

Based on statistical paleoclimatic reconstructions from pollen (Guiot et al., 1993; 
Cheddadi et al., 1997) and paleoclimatic simulations by GCMs, an improved method 
of past carbon storage estimates was developed by using a simple biospheric model 
(Esser and Lautenschlager, 1994; Peng et al., 1995a; 1995b; 1998b) to take into 
account the variations in carbon density applied to biomes. However, climatic 
reconstructions from pollen have been built upon the assumption that plant-climate 
interactions remain the same throughout time, and implicitly assume that these 
interactions are independent on changes in atmospheric CO2 (Cowling and Sykes, 
1999; Guiot et al., 2000; Jackson and Williams, 2004). This assumption may lead to 
considerable bias (Jolly and Haxeltine, 1997; Street-Perrott et al., 1997; Cowling and 
Sykes, 1999; Wu et al., 2007a) since physiological data has demonstrated that the 
processes that modify carbon and water uptake in plants are highly dependent on CO2 
concentrations (Polley et al., 1993; Farquhar, 1997). Polar ice core records, for 
example, show that atmospheric CO2 concentrations have fluctuated significantly over 
at least the last 740,000 years (EPICA community members, 2004). To date, 
paleoclimatic simulations using GCMs are not precise enough (François et al., 1998; 
Joussaume and Taylor, 2000; Ramstein et al., 2007) to provide unbiased carbon 
storage estimates. A solution that solves this problem is to use an ecophysiological 
process model in an inverse mode (Guiot et al., 2000; Wu et al., 2007a; Wu et al., 
2007b) to calculate model inputs (e.g., climate) when model outputs are constrained 
by pollen data and CO  concentrations are set to their observed value.  2

In this paper, a new past terrestrial carbon storage model (PCM) constrained within 
the BIOME6000 database (Prentice et al., 2000) is presented, combining the 
process-based biospheric models BIOME4 (Kaplan, 2001) and DEMETER (Foley, 
1995) into an inverse model (Guiot et al., 2000; Wu et al., 2007a) where the 
reconstructed climate and carbon storage PCM is tested against the modern 
observable global climate and carbon data. 
2. Model structure 

Figure 1 provides a schematic of the applied method based upon vegetation, carbon 
models, and an inversion algorithm. The first model, BIOME4 (Kaplan et al., 2001), 
is a physiological process-based global model that is particularly useful when working 
with paleovegetation since it operates with a limited number of inputs (monthly 
temperature, precipitation, sunshine, absolute minimum temperature, soil 
granulometry, and atmospheric CO2 concentrations) that are easily available. However, 
its equilibrium design makes it impossible to directly simulate terrestrial carbon 
stocks. The second model, DEMETER (Foley, 1995), provides a better simulation of 
global and continental-scale biospheric carbon storage within vegetation, litter, and 
soil, but offers only a simple potential vegetation submodel derived from the BIOME1 
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model (Prentice et al., 1992). To overcome the shortcomings of both approaches, 
these models are coupled with biome types and NPP that are calculated by BIOME4 
and then used as inputs for the DEMETER model.  

 
The data reveals the biome types of the pollen sites but not the corresponding 

climate, a key model input. To work around this, each model output was matched with 
the pollen data and model inputs were deduced. Typically, this is an inversion problem 
(Mosegaard and Tarantola, 1995) already applied to the pollen data (Guiot et al., 2000, 
Wu et al., 2007a; Wu et al., 2007b). 

2.1 The vegetation submodel 
The vegetation submodel is based upon the BIOME4 vegetation model developed 

from BIOME3 (Haxeltine and Prentice, 1996) and modified and validated by Kaplan 
(2001). BIOME4 predicts the global steady state of vegetation distribution, structure, 
and biogeochemical processes by simulating the direct effects of CO2 on 
photosynthesis, stomata conductance, and the leaf area index (LAI) by means of the 
interactively coupled carbon and water flux model.  

BIOME4 includes 12 plant functional types (PFT) defined by a set of bioclimatic 
limits and physiological parameters (Kaplan, 2001). These PFTs represent broad and 
physiologically distinct classes ranging from cushion forbs to tropical rain forest trees. 
For a given site, ecophysiological constraints determine the potential occurrence of 
specific PFTs. A coupled carbon and water flux scheme for each PFT is then used to 
calculate the seasonal maximum LAI that maximizes net primary production (NPP), 
based on a daily time step simulation of soil water balance and monthly process-based 
calculations of canopy conductance, photosynthesis, respiration, and phonological 
state. Competition between PFTs is simulated by using the optimal NPP of each PFT 
as an index of competitiveness.  

To identify the biome of a given site, the model ranks both woody and grass PFTs 
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that were calculated for the site. The ranking is defined according to a set of rules 
based on biogeochemical variables including LAI, NPP, and mean annual soil 
moisture. The ranked combination of PFTs is classified into one of 27 biome types 
which are then sequentially used as inputs to DEMETER. 

2.2 The carbon submodel 
Carbon simulation follows the approaches of BIOME4 (Kaplan, 2001) and 

DEMETER (Foley, 1995). The photosynthetic simulation was adapted from BIOME4 
since it is a process-based model better equipped at coupling carbon and water flux 
simulations than DEMETER, but without explicitly modeling the nitrogen cycle 
(Haxeltine and Prentice, 1996). Plant respiration is also calculated following the 
approach of BIOME4. The carbon pool simulation in vegetation, litter, and soil was 
adapted from Foley’s terrestrial biospheric carbon model DEMETER (1995). For each 
plant type, annual NPP was partitioned among three parts: leaf, stem, and root (Table 
1). Soil organic carbon was divided into fast and slow carbon pools (Table 1) to a 
depth of 1m, a simplification of the Century model developed for organic carbon 
material in soils (Parton et al., 1993) with the exception of the nitrogen cycle (see the 
appendix for a detail description of the model). 

2.3 Inverse modeling procedure 
  An innovative approach of the PCM model in this study is the inversion technique 
used for climatic reconstruction and terrestrial carbon storage estimates. The principle 
behind the method is to estimate the input of BIOME4 (e.g., monthly climate) given 
the known data related to the output of the model, that is, biome scores (Prentice et al., 
1996) (see section 3.2) derived, in this case, from pollen. The reconstructed climate is 
then used as an input for DEMETER to deduce the terrestrial vegetation carbon cycle 
(Figure 1). However, this is not an analytical inversion since it cannot be calculated 
mathematically. Instead, an iterative approach is used in order to find a representative 
set of climate scenarios compatible with vegetation records by exploring an input 
space defined by input parameters, here represented by monthly climatic values. 

The inversion process consists of finding all combinations of climatic factors that 
could support a biome similar to the one observed at a given site. The main input 
parameters driving vegetation are temperature, precipitation, and atmospheric CO2 
concentration. To limit the number of parameters, model outputs were fitted to the 
observed data by altering January and July temperatures and precipitation. The other 
monthly parameters were deduced, including monthly sunshine, from these four 
parameters using empirical equations (Guiot et al., 2000). This procedure implies that 
the maximum anomalies are found either in January or July, although this may not be 
necessarily true in practice (Bartlein et al., 1998). The absolute minimum temperature 
(T ) is based upon the relationship between Tmin min and the mean temperature of the 
coldest month (MTCO) deduced from global climatic data (Spangler and Jenne, 1988; 
Leemans and Cramer, 1991): 3.211.1min −= MTCOT  (R2 = 0.92). 

Since no full compatibility exists between the biome typology of BIOME4 and the 
biome typology of pollen data, a transfer matrix was therefore defined (Table 2). 
These values were set empirically by examining the modern pollen biome score data 
and by taking into account the theoretical definition of each biome based upon 
modern vegetation maps (Prentice et al., 1992). 

For a given pollen site, the ensuing procedure was followed: (1) Selection of a 
four-dimensional vector of climatic anomalies (∆T: temperature, ∆P: precipitation), 
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that is, the difference between past and modern values using a uniform random 
generator within prescribed ranges. (2) Estimation of additional monthly components 
of the climate using empirical equations (Eqn.36 to 38 in the appendix). (3) Addition 
of anomalies to the modern climate before running it through BIOME4. (4) 
Application of a transfer matrix (Table 2) to convert the BIOME4 biome into the 
pollen biome scores, and comparing the simulated biome scores to the observed 
scores using a Euclidian distance between the observed and the simulated biome 
scores (Eqn.33) and then calculating the maximum likelihood statistic LH (Eqn.32). 
(5) Acceptation or rejection of this climate vector based upon its LH, relative to 
criterion C (Eqn.35). (6) Random selection of another climate anomaly vector before 
returning back to procedure 1 above. This iterative process is terminated when a 
sufficient number of valid scenarios to calculate the a posteriori probability 
distributions are obtained, typically 200 to 300. Finally, the most probable climatic 
and carbon storage scenarios, together with their confidence intervals, are calculated 
from the a posteriori probabilities. 

3. Model input and test data 
3.1 Climate and soil 

Modern monthly mean climatic variables, including temperature, precipitation, and 
cloudiness have been spatially interpolated to each modern pollen site using a global 
climatic dataset (Leemans and Cramer, 1991). The absolute minimum temperature is 
interpolated from the dataset compiled by Spangler and Jenne (1988). A two-layer 
backpropagation (BP) artificial neural network technique was used as described by 
Guiot et al. (1996) for the interpolation. Modern CO2 concentrations were set to 340 
ppmv, the concentration of the period when most of the modern pollen samples were 
collected (between 1970 and 1990). Soil properties were derived from the FAO digital 
soil map of the world (FAO, 1995).  

3.2  Pollen data 

  Pollen data compiled by the BIOME6000 project (Prentice et al., 2000) concerns 
three key periods: 0 k, 6 k and 21 k cal 14C BP. A project goal was to classify pollen 
assemblages into a set of vegetation types. For this test, the modern dataset containing 
1491 sample sites from Africa and Eurasia were used (Prentice et al., 1996, Jolly et al., 
1998, Tarasov et al, 1998) covering most biome types throughout the world.  

3.3 Carbon data 

Several global observational datasets exist that describe the potential natural state 
of terrestrial carbon stocks (Schlesinger, 1977; Post et al., 1982; Matthews, 1983; 
Zinke et al., 1984; Olson et al., 1985; Batjes, 1996). For this study, the vegetation 
biomass and soil carbon density data complied by Olson et al. (1985) and Zinke et al. 
(1984) for vegetation biomass and soil carbon, respectively, were used. 

4. Validation applying measured data 
To evaluate the reliability of the method, 1491 modern pollen sites in Eurasia and 

Africa were used for the validation test. Using the same inverse procedure discussed 
in section 2.3 (Inverse modeling procedure), the interpolated climatic variables from 
each pollen site discussed in section 3.1 (Climate and soil) were used and added with 
the anomalies to the modern climate by randomly browsing the climatic space as 
shown in Table 3. The biomes for the pollen sites were then predicated while the 
present day climatic and carbon densities were reconstructed. 
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Wu et al., Fig. 2 

The reconstructed biomes for the modern pollen sites had to be first compared 
(Figure 2a-b). No systematic regional errors exist between pollen and predicted 
biomes. In total, 61% of the biomes were correctly predicted (Table 4). The method 
worked particularly well for arboreal biomes, which correctly predicted 57% to 100% 
of the sites. A total of 61% signifies that the algorithm is not always able to converge 
to the observed biome; however, if climatically contiguous biomes are acceptable (e.g., 
STEP/DESE or SAVA/STEP or TUND/TAIG), it increases to 91%, considered a good 
fit. For the other 9% of sites, disagreement can be explained (1) partly by human 
impact on modern vegetation (e.g., deforestation, irrigation, planting new species in 
populated regions) since pollen biomes do not reflect potential vegetation; (2) partly 
by an incorrect estimation of the modern climate in mountainous regions where there 
are fewer weather stations; or (3) partly by the uncertainties in pollen-based 
biomization itself (e.g., some pollen samples may have two or more dominant biomes 
that have the same biome score).  
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Wu et al., Fig. 3 

Second, statistical correlations between actual and reconstructed climatic variables 
at pollen sample sites were examined. Since climatic values reconstructed by the 
model are given as anomalies, the reconstructed climates are the sum of the observed 
climates and predicted climatic anomalies. These predicted climatic anomalies should 
equal zero if the observed climate and predicted climate are perfectly consistent. In 
the climatic validation (Figure 3), the predicted climates (in which the reconstructed 
climatic anomalies were added to the modern climatic values) were used to compare 
against the observed values, the same modern climatic values in the modern validation 
in this case. Correlations (R) between the observed and estimated parameters were 
significantly high, that is, from 0.83 to 0.97 (Figure 3a-f), based on the acceptable 
biomes used for climate reconstruction. Although the acceptable biomes cover a larger 
spatial climatic space than the same biomes, increasing the range of climatic 
reconstructions, the acceptable biomes cover most of the pollen sites. If a straight line 
is drawn between estimations and observations, an intercept of 0 and a slope of 1 are 
expected. The slope is slightly biased for mean temperature variables for the warmest 
month (MTWA) and mean annual precipitation (MAP) as well as the ratio of actual to 
potential evapotranspiration (α). The biases on the intercepts show a tendency to 
overestimate MTWA, MAP, and the growing degree for daytime temperatures above 
5°C (GDD).  

 
Wu et al., Fig. 4 
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Third, terrestrial carbon between model reconstructions and measurements was 
compared. Since the measurement data of vegetation and soil carbon densities were 
unavailable from the same location as the pollen sites and that these pollen sites were 
restricted to Africa and Eurasia, another strategy was used for validation. The PCM 
model was run for all global climatic data from Leemans and Cramer (1991), and the 
carbon simulations were averaged by biome. These averages were compared to the 
available data, also averaged by biome (Table 5). The coefficient of determination (R) 
was 0.96 for vegetation C (Figure 4a) and 0.90 for soil C (Figure 4b). The simulated 
biome averaged carbon densities are therefore in strong agreement with the vegetation 
and soil carbon data presented by Olson et al. (1985) and Zinke et al. (1984).  

On a global scale, the potential vegetation carbon storage in preindustrial times 
simulated by the PCM based on global climatic data was approximately 907 Pg C 
(Table 5). Soil carbon up to 1 m deep was simulated to be 1284 Pg C. Tropical 
rainforests and tropical seasonal forests had the highest vegetation carbon levels, 
approximately 188 and 80 Pg C, respectively; whereas the largest soil carbon pool 
(181 Pg C) was found within cold evergreen needleleaf forests due of its large 
expanse. 

5. Discussion and conclusion 
5.1 Comparison to previous approaches 

The method described in this paper is a new concept for past carbon storage 
simulations, allowing physiological processes constrained by pollen data. The key 
innovative point, in comparison to previous methods, is that this double-data model 
approach in which the model is constrained by data provides more realistic 
simulations. 

For vegetation simulations, BIOME4, a physiological process-based global model, 
was used to improve global biome simulations. This also provides an important 
advantage in comparison with previous simulations based on the simple 
biogeographical model BIOME1 (Prentice et al., 1992). Table 4 shows that the 
simulated biomes in this study closely match the observed values.  

Concerning climatic reconstruction, the results of this study on the whole are 
comparable to or better than previous statistical methods since the correlation between 
the modern observed and reconstructed variables range (1) from 0.83 (GDD) to 0.90 
(MTCO) using the taxa-based best modern analogues technique in Europe (Cheddadi 
et al., 1997); (2) from 0.70 (MAP) to 0.96 (MAT) using the PFT-based best modern 
analogues technique in Eurasia (Tarasov et al., 1999); and (3) from 0.87 (MTWA) to 
0.91 (MTCO) in Europe using the PFT-based best modern analogues technique (Davis 
et al., 2003). In comparison, the numbers obtained in this study range from 0.83 (α) to 
0.97 (MAT).  

One major difference between this study and other statistical approaches is that 
previous climatic reconstruction methods were built on the assumption that 
plant-climate interactions remain constant through time as well as the fact that 
calibration is carried out on modern data with the implicit assumption that these 
interactions are independent on changes in atmospheric CO2. The process-based 
model used here does not require such hypotheses since the climate and CO2 
concentration inputs are model parameters. Even though both approaches display 
similar results for modern data, the process-based approach is significantly better 
suited for past periods where vegetation changes are potentially led by lowered CO  2
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levels, especially during glacial periods (Guiot et al., 1999; Wu et al., 2007a; Wu et al, 
2007b). This can result in significant consequences on the simulation of terrestrial 
carbon storage dynamics during the Quaternary period. Similarly, the inverse 
approach can also take into account climatologies that do not exist in modern times as 
increased seasonality has occurred during the Holocene, possibly resulting in a lack of 
modern analogues for the past.  

Concerning the simulation of carbon stocks, results from this study are consistent 
with those obtained by DEMETER (Foley, 1995). The PCM, therefore, has the 
advantage of the biospheric carbon storage simulation of DEMETER. The global 
potential of vegetation carbon storage (907 Pg C) during the preindustrial period is 
also comparable to previous estimates, ranging from 560 to 1100 Pg C (Whittaker and 
Likens, 1973; Atjay et al., 1979; Olson et al., 1985). Soil carbon simulation (1284 Pg 
C) is consistent with the measured data of 1220 Pg C by Sombroek et al. (1993) and 
1309 Pg C by Zinke et al. (1984), but appears to underestimate the range of estimates 
(1456 Pg C) from Schlesinger (1977), (1395 Pg C) Post et al. (1982), (1457 Pg C) 
Meentemeyer et al. (1985), and (1462 to 1548 Pg C) Batjes (1996).  

This new approach is, in some ways, similar to another approaches based on 
integrating paleoecological data and biospheric models (Peng et al., 1995a; 1995b; 
1998b), but differs in two major ways: (1) The input climate of the biospheric carbon 
models from previous studies was based on climatic reconstructions using statistical 
methods, whereas the climatic reconstruction carried out for this study takes into 
account the atmospheric CO2 effect; (2) previous carbon storage estimates were based 
on statistical models or an empirical biospheric model (OBM) whereas estimates in 
this study were based on a process-based model. Even though the models used in this 
study are relatively simple, they are reliable enough to estimate past carbon storage 
levels since changes driving vegetation are significant. Moreover, most of the recent 
sophisticated global dynamic vegetation models cannot run under paleoconditions due 
to the lack of input information.  

The validation of the PCM with modern data shows that the method can 
successfully simulate most pollen biomes, modern climates, and biome-averaged 
terrestrial carbon variables. It can be applied to past pollen data in the future, 
particularly to data between periods from 6 ka and 21 ka BP. 

5.2 Model validation and future improvements 
  A major challenge for all process-based models is validation. The results presented 
in this study demonstrate that the PCM is able to provide reasonable reconstructions 
of climatic and carbon density for different vegetation types from pollen data and 
modern climates. However, the PCM approach is not a panacea. Since it is a 
model-based approach, it is highly dependent upon the quality of the vegetation model 
itself. Additional verification should be used when applying vegetation models.  

Terrestrial carbon accumulation may be constrained by nutrients, particularly 
nitrogen (Oren et al., 2001; Finzi et al., 2002; Luo et al., 2004), through mechanisms 
that are not explicitly modeled in this study. Moreover, the PCM requires a great 
amount of computation time that will become problematic if using more sophisticated 
dynamic models that include more precise simulations of NPP, belowground biomass, 
soil carbon, nitrogen, and water dynamics.  

The MCMC algorithm used in the PCM does not guarantee convergence towards 
an optimal solution, which is further complicated by the fact that simulated biome 

 10



types in BIOME4 are not directly comparable to pollen biomes, adding a source of 
uncertainty to the analysis that is difficult to quantify.  

In future versions of the PCM, these shortcomings will be minimized, and the 
carbon simulation will be scaled up to the regional or global levels by a greater use of 
the BIOME6000 pollen database. Changes to global or regional terrestrial carbon 
dynamics since the LGM will therefore be estimated with less uncertainties. It 
remains important, however, to use this approach in parallel with other methods. The 
comparison of different past carbon storage reconstructions can improve our 
understanding of dynamic processes of global vegetation and carbon cycling during 
glacial-interglacial periods. 
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Figure Captions 
  Figure 1: Schematic diagram of the inverse vegetation modeling approach to past 
carbon storage reconstruction. 

Figure 2: Comparison of each site between pollen-based and simulated biomes in 
Eurasia and Africa at 0 ka BP. (a) Observed pollen biome. (b) Predicted biome by 
model. See caption of Table 1 for biome code. 

Figure 3: Correlation between observed climates and predicted values by the 
model in Eurasia and Africa at 0 ka BP. (a) Mean temperature of the coldest month 
(MTCO); (b) mean temperature of the warmest month (MTWA); (c) growing 
degree-days above 5°C (GDD); (d) ratio of actual to potential evapotranspiration (α); 
(e) mean annual temperature (MAT); and (f) mean annual precipitation (MAP). The 
solid line is the least-squares linear regression, and the dashed line is the 1:1 line. R is 
the correlation coefficient, and RMSE is the root-mean-square error of the residuals. 

Figure 4: Correlation between averaged PCM carbon simulations and averaged 
observations: (a) vegetation carbon density; and (b) soil carbon density. The error bars 
relate to the 95% confidence intervals. R and RMSE are the correlation coefficient 
and the root-mean-square error of the residuals, respectively. 
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Table 1: Parameters of vegetation carbon simulation 

Vegetation 
type 

pleaf pstem proot tleaf 
(yr) 

tstem 
(yr) 

troot 
(yr) 

fresp Pfast Pslow

TrEgFo 0.40 0.20 0.40 1 50 10 0.65 0.980 0.020 

TrSeDeFo 0.40 0.20 0.40 1 50 10 0.65 0.980 0.020 

TrDeFo 0.40 0.20 0.40 1 25 5 0.65 0.980 0.020 

TeDeFo 0.40 0.20 0.40 1 50 10 0.70 0.985 0.015 

TeCoFo 0.40 0.20 0.40 2 60 10 0.70 0.985 0.015 

WaMxFo 0.40 0.20 0.40 1 50 10 0.70 0.985 0.015 

CoMxFo 0.40 0.20 0.40 2 60 10 0.70 0.985 0.015 

CoCoFo 0.40 0.20 0.40 2 80 10 0.70 0.985 0.015 

ClMxFo 0.40 0.20 0.40 2 80 10 0.70 0.985 0.015 

EgTaig 0.40 0.20 0.40 2 80 10 0.70 0.985 0.015 

DeTaig 0.40 0.20 0.40 2 80 10 0.70 0.985 0.015 

TrSav 0.50 0.10 0.40 2 30 5 0.70 0.985 0.015 

TrXsSl 0.50 0.10 0.40 2 40 5 0.70 0.985 0.015 

TeXsSl 0.50 0.10 0.40 1 40 5 0.70 0.985 0.015 

TeScWo 0.50 0.10 0.40 1 40 5 0.70 0.985 0.015 

TeBlSav 0.50 0.10 0.40 1 40 5 0.70 0.985 0.015 

OpCoWo 0.50 0.10 0.40 1 40 5 0.70 0.985 0.015 

BoPrkl 0.50 0.10 0.40 1 40 5 0.70 0.985 0.015 

TrGrl 0.70 0.10 0.20 1 30 2 0.70 0.985 0.015 

TeGrlc 0.70 0.10 0.20 1 30 2 0.70 0.985 0.015 

TeGrlw 0.70 0.10 0.20 1 30 2 0.70 0.985 0.015 

HotDesert 0.50 0.20 0.30 1 30 2 0.70 0.985 0.015 

Desert 0.60 0.10 0.30 1 30 2 0.70 0.985 0.015 

ShTund 0.60 0.10 0.30 1 80 5 0.70 0.985 0.015 

DShTund 0.60 0.10 0.30 1 80 5 0.70 0.985 0.015 

PsShTund 0.60 0.10 0.30 1 80 5 0.70 0.985 0.015 

FoLiMoss 0.60 0.10 0.30 1 1 1 0.70 0.985 0.015 

Barren 0.00 0.00 0.00 0 0 0 0.00 0.000 0.000 

LIce 0.00 0.00 0.00 0 0 0 0.00 0.000 0.000 

Vegetation (BIOME4) types: Barren, barren land; BoPrkl, boreal parkland; ClMxFo, cold mixed forest; CoCoFo, cool 
evergreen needleleaf forest; CoMxFo, cool mixed forest; Desert, desert; DeTaig, cold deciduous forest; DshTund, erect 
dwarf-shrub tundra; EgTaig, cold evergreen needleleaf forest; FoLiMoss, cushion-forb, lichen, and moss tundra; HotDesert, hot 
desert; LIce, land ice; OpCoWo; temperate evergreen needleleaf open woodland; PsShTund, prostrate dwarf-shrub tundra; 
ShTund, low and high shrub tundra; TeBlSav, temperate deciduous broadleaved savanna; TeCoFo, temperate evergreen 
needleleaf forest; TeDeFo, temperate deciduous broadleaf forest; TeGrlc, cool temperate grassland; TeGrlw, warm temperate 
grassland; TeScWo, temperate sclerophyll woodland and shrubland; TeXsSl, temperate xerophytic shrubland; TrDeFo, tropical 
deciduous broadleaf forest and woodland; TrEgFo, tropical evergreen broadleaf forest; TrGrl, tropical grassland; TrSav, tropical 
savanna; TrSeDeFo, tropical semi-evergreen broadleaf forest; TrXsSl, tropical xerophytic shrubland; WaMxFo, warm-temperate 
evergreen broadleaf and mixed forest. 
 pleaf, pstem, and proot represent the allocation of NPP into the biomass compartments. tleaf, tstem, and troot are the average lift span 
(years) of plant compartments of vegetations. fresp is the fraction of litter carbon released as CO2 during decomposition. Pfast and 
Pslow are the fractions of humus sent to the fast and slow pools, respectively. 
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Table 2: Transfer matrix from BIOME4 typology to the pollen biome scores 1 
Pollen biome type BIOME4 

type CLDE CLMX COCO COMX DESE STEP TAIG TEDE TUND XERO HODE SAVA TDFO TRFO TSFO WAMX TXWS 
TrEgFo 0 0 0 0 0 0 0 0 0 0 0 0 5 15 10 0 0 

TrSeDeFo 0 0 0 0 0 0 0 0 0 0 0 0 10 10 15 0 5 

TrDeFo 0 0 0 0 0 0 0 0 0 0 0 5 15 5 10 0 0 

TeDeFo 0 5 5 10 0 0 0 15 0 0 0 0 0 0 0 10 0 

TeCoFo 0 0 15 10 0 0 0 5 0 0 0 0 0 0 0 0 0 

WaMxFo 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 15 0 

CoMxFo 0 0 10 15 0 0 0 10 0 0 0 0 0 0 0 0 0 

CoCoFo 0 0 15 10 0 0 5 0 0 0 0 0 0 0 0 0 0 

ClMxFo 10 15 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 

EgTaig 5 10 5 0 0 0 15 0 0 0 0 0 0 0 0 0 0 

DeTaig 10 5 0 0 0 0 15 0 5 0 0 0 0 0 0 0 0 

TrSav 0 0 0 0 0 5 0 0 0 0 0 15 5 0 0 0 10 

TrXsSl 0 0 0 0 0 10 0 0 0 0 0 5 0 0 0 0 15 

TeXsSl 0 0 0 0 0 5 0 0 0 15 0 0 0 0 0 5 0 

TeScWo 0 0 0 0 0 5 0 0 0 15 0 5 0 0 0 10 0 

TeBlSav 0 0 0 0 0 5 0 5 0 5 0 15 0 0 0 5 0 

OpCoWo 0 0 10 0 0 5 0 0 0 0 0 0 0 0 0 0 0 

BoPrkl 0 0 5 0 0 10 10 0 0 5 0 0 0 0 0 0 0 

TrGrl 0 0 0 0 0 15 0 0 0 0 5 5 0 0 0 0 10 

TeGrlc 0 0 0 0 5 15 0 0 5 0 0 0 0 0 0 0 0 

TeGrlw 0 0 0 0 5 15 0 0 0 5 0 5 0 0 0 0 0 



HotDesert 0 0 0 0 0 10 0 0 0 0 15 0 0 0 0 0 0 

Desert 0 0 0 0 15 10 0 0 0 0 0 0 0 0 0 0 0 

ShTund 5 0 0 0 0 14 5 0 15 0 0 0 0 0 0 0 0 

DShTund 0 0 0 0 0 5 0 0 15 0 0 0 0 0 0 0 0 

PsShTund 0 0 0 0 0 5 0 0 15 0 0 0 0 0 0 0 0 

FoLiMoss 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 

Barren 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

LIce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Pollen biome types: CLDE, cold deciduous forest; CLMX, cold mixed forest; COCO, cool coniferous forest; COMX, cool mixed forest; DESE, desert; HODE, 
hot desert; SAVA, savanna; STEP, steppe; TAIG, taiga; TDFO, tropical dry forest; TEDE, temperate deciduous forest; TRFO, tropical rain forest; TSFO, tropical 
seasonal forest; TUND, tundra; TXWS, tropical xerophytic woods/scrub; WAMX, broadleaved evergreen/warm mixed forest; XERO, xerophytic woods/scrub. 
BIOME4 type codes are given in Table 1. Temperate grassland were divided into cool temperate grassland and warm temperate grassland, and desert into cold 
desert and hot desert, based upon the minimum temperature (22°C) of the mean temperature of the warmest month (Prentice et al., 1992). 
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 1 
2 
3 
4 
5 
6 

 
 

Table 3: Modern ranges of input parameters for simulations.  
 

 
Parameter Modern 

∆T [-10, 10]°C jan

∆T [-10, 10]°C jul

∆P [-90, 100]% jan

∆P [-90, 100]% jul

340ppmv CO2

Number of iterations 2000 
7 
8 

Ranges are given in anomalies for modern values (deviation for temperature 
and percentages for precipitation). 
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Table 4: Numerical comparison of each site between pollen-derived (‘p’) and simulated (‘s’) biomes at modern sites in Eurasia and 
Africa 

1 
2 
3  

Biome CLDEs CLMXs COCOs COMXs DESEs SAVAs STEPs TAIGs TDFOs TEDEs TRFOs TSFOs TUNDs TXWSs WAMXs XEROs N 
Excellent 

(%) 

Acceptable 

(%) 

CLDEp 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

COCOp 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 100 100 

COMXp 0 0 0 24 0 0 0 3 0 5 0 0 0 0 0 0 32 75 91 

DESEp 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 12 100 100 

SAVAp 0 0 0 0 0 49 1 0 1 0 0 0 0 41 1 10 103 48 98 

STEPp 0 1 0 1 35 41 270 6 2 24 0 2 4 133 15 57 581 46 92 

TAIGp 0 0 0 1 0 0 0 106 0 1 0 0 1 0 0 0 108 97 98 

TDFOp 0 0 0 0 0 1 0 0 4 0 0 0 0 1 0 1 7 57 57 

TEDEp 0 0 0 0 0 0 0 0 0 113 0 0 0 0 1 0 114 98 100 

TRFOp 0 0 0 0 0 0 0 0 1 0 8 0 0 0 0 0 9 89 100 

TSFOp 0 0 0 0 0 0 0 0 4 0 13 36 0 1 1 0 55 65 96 

TUNDp 0 0 0 0 1 0 12 37 0 6 0 0 22 0 1 1 80 28 89 

TXWSp 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 100 100 

WAMXp 0 0 0 0 0 0 0 0 1 22 1 3 0 0 169 3 199 85 98 

XEROp 0 0 7 1 2 0 3 2 0 49 0 0 0 2 26 90 182 49 65 

Ave  rage    61% 91%                

Tota   l SN    1491 910 1350                

N: number of sites; Excellent: the same biomes between observation and simulation; Acceptable: the same and climatically contiguous biomes between observation 
and simulation. Bold value: the same and climatically contiguous biomes (i.e., excellent and acceptable biomes). Value in cell (i,j) provides the number of pollen 
biomes i simulated as biome j. Biome codes are given in Table 2.  

4 
5 
6 



Table 5: Potential global terrestrial carbon storage during preindustrial periods  1 
2  

Carbon density (Kg C/m2Biome type Area ) Carbon storage (Pg C) 
10(10  m2) Vegetation Litter Soil Vegetation Litter Soil Total 

TrEgFo 906.1  20.7  1.0 10.9 187.7 9.4 98.6  295.8 
TrSeDeFo 489.5  16.4  1.0 9.7 80.1 4.8 47.7  132.6 
TrDeFo 663.8  7.0  1.1 9.8 46.8 7.4 64.9  119.0 
TeDeFo 594.3  11.7  3.0 16.9 69.4 18.0 100.7  188.1 
TeCoFo 313.8  12.1  2.2 12.3 38.0 6.8 38.6  83.5 
WaMxFo 870.3  15.9  1.7 11.2 138.8 15.2 97.5  251.4 
CoMxFo 475.4  9.4  2.7 14.8 44.7 12.6 70.6  127.9 
CoCoFo 429.0  8.4  2.4 13.3 36.1 10.3 57.0  103.4 
ClMxFo 119.2  7.9  2.3 20.6 9.4 5.2 24.5  39.1 
EgTaig 1506.7  5.8  2.2 12.1 87.3 33.9 181.7  302.9 
DeTaig 379.1  4.6  2.9 14.6 17.3 10.9 55.3  83.5 
TrSav 678.7  5.9  0.8 6.8 40.3 5.5 46.3  92.1 
TrXsSl 1252.2  2.8  0.5 3.5 35.2 5.7 43.8  84.7 
TeXsSl 557.4  2.5  0.7 4.9 14.1 3.8 27.1  45.1 
TeScWo 341.6  5.0  1.4 9.8 17.2 4.8 33.4  55.4 
TeBlSav 155.7  5.4  2.2 14.7 8.4 3.4 22.9  34.6 
OpCoWo 156.6  2.2  1.7 9.6 3.5 2.6 15.0  21.2 
BoPrkl 17.7  1.6  1.4 7.5 0.3 0.2 1.3  1.9 
TrGrl 238.3  1.8  2.6 13.7 4.2 6.1 32.5  42.9 
TeGrl 496.1  2.0  2.5 13.2 9.7 12.3 65.7  87.7 
Desert 1818.4  0.9  0.3 1.9 16.4 6.2 34.8  57.5 
Tund 1379.3  0.4  0.6 11.3 5.7 8.3 156.2  170.2 
Barren 101.5  0.0  0.0 0.1 0.0 0.0 0.1  0.1 
Global total     906.5 187.5 1283.7 2377.7 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Biome codes are given in Table 2.  
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Appendix: 1 
2 
3 

4 
5 
6 

7 

8 
9 

10 
11 
12 
13 
14 

15 
16 

 
1. Carbon submodel 

  The carbon simulation follows the approaches of BIOME4 and DEMETER. 
Although a full description of the model is provided by Haxeltine and Prentice (1996) 
and Foley (1995), a brief overview of the carbon cycle model is presented below.   

1.1 Photosynthesis 

The photosynthetic scheme is based on the Farquhar photosynthetic model as 
simplified by Collatz et al. (1991, 1992). The optimality hypothesis is assumed to 
apply since nitrogen content and Rubisco activity of leaves are assumed to vary both 
seasonally and with variation in canopy position in a way that maximizes net 
assimilation at leaf level. The hypothesis states that this is due to light use 
efficiencies and photosynthetic rates that are reduced in natural ecosystems by 
temperature, water, and nutrient stress.  

Plant photosynthesis adopting the C3 versus C4 biochemical pathways is modeled 
in slightly different ways. For C3 plants assimilation, And is given by: 
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θwhere And is the daily net photosynthetic uptake; R  the daily leaf respiration rate; d  

= 0.7; APRA the total absorbed PAR; 
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CΦ  the PFT specific parameter; the 

effect of low temperatures on C

3TCΦ24 

25  photosynthesis; C3 mass the molar mass of 

carbon; the scaling parameter forα ; αaα C3 the intrinsic quantum efficiency for CO2 

uptake; p

26 

27 

28 

 the internal partial pressure of CO ; Γi 2 * the CO2 compensation point; 

and the Michalis constant for COCK OK 2 and O ; and the partial pressure O][ 2O2 2. 
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where pa is the ambient partial of CO2; λ a parameter; τ the kinetic parameter; bC3 = 
0.015; Tc and Vm the monthly temperatures and the maximum daily rate of net 
photosynthesis. 

  For C4 photosynthesis, the functions are calculated as:  
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where αC4 is the intrinsic quantum efficiency for C4 photosynthesis; Φpi the effect of 
reduced p  on C4 photosynthesis; Φi TC4 the response of C4 plants to extreme 
temperature; and λmC4 the value of λ that C4 plants maintain under non-water stress 
conditions. 

  The daytime assimilation rate Adt is related to p  through the COi 2 diffusion 
gradient between the atmosphere and intercellular air spaces. 
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where gc is the average daytime canopy conductance; gmin the PFT-specific minimum 
canopy conductance; and C . Aa the ambient mole fraction of CO dt2  is obtained from 
And by the addition of nighttime respiration. 

λ  Under non-water stress conditions the maximum values of (λ  and λmC3 mC4 for 
C3 and C4 plants) allow the maximum potential photosynthesis (Eqn.1) and 
maximum potential conductance (g

23 
24 
25 , Eqn.14). Water stress results in a lower canopy p
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conductance, in which case the water balance calculation provides the actual canopy 
conductance. Annual GPP is obtained by adding daytime respiration to A

1 
2 
3 

4 

5 

dt and 
summing the result over a one year period.  

1.2 Respiration 

Plant respiration is calculated as: 

                           (15) growthrootfinetranstleafplant RRRRR +++= _6 
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10 
11 
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where Rplant is the total annual plant respiration cost; Rleaf the annual leaf respiration 
that is calculated in a monthly time step by the photosynthetic model; Rtranst the 
annual maintenance respiration cost for transport tissues; Rfine_root and Rgrowth the fine 
root respiration and annual growth respiration; and Rgrowth the estimate of 20% of the 
gross photosynthesis remaining after all other respiration costs have been removed 
(Ryan, 1991) 
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where m is the number of the month and Tc is the mean monthly temperature; Kr the 
sapwood respiration rate of the reference temperature (T ) of 10ºC; Eref o = 308.56K; 
T  = -46.02ºC; C  the total sapwood carbon content; LAI the leaf area index; Co s n a 
parameter for the sapwood carbon content per unit LAI; α = 1; and Lf the total annual 
leaf litterfall carbon. Therefore, the net primary production (NPP) is calculated: 

                                          (20) plantRGPPNPP −=

1.3 Vegetation Carbon 

Carbon was simulated in vegetation using an adaptation of the terrestrial 
biosphere carbon model by Foley (1995) and King et al. (1997). The steady state 
carbon density of each plant compartment (Ck) is: 

                                            (21) jkjkk tpNPPC ⋅=

where NPP is the equilibrium steady state annual net primary production; pjk the 
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partitioning coefficient for the kth plant compartment of the vegetation type j; and tjk 
the average lifespan of plant part k of vegetation type j. The parameters (Table 1) for 
each of the vegetation types of the BIOME4 model were defined by Foley (1995) 
and King et al. (1997).  
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1.4 Litter Carbon 

  Like vegetation carbon, litter carbon has an associated three components: leaf, 
stem, and root litter. Under equilibrium conditions, the litter production L for each 
plant k is: 

jk

k
k t

CL =                                                     (22) 9 
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where Ck is the steady state vegetation carbon density; and tjk the average lifespan of 
plant part k of vegetation type j (Table 1). 

  Carbon stored in litter type j (Cl j) is: 
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where kl j is the decomposition coefficient for the litter. Each vegetation type has an 
associated above and below-ground litter pool. The rate of litter decay is controlled 
by climate (temperature and moisture) and the quality of the vegetation material 
(Meetenmeyer, 1978, 1984; Vogt et al., 1986; Dyer et al., 1990).  
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where W1 is the average moisture status in the upper soil layer. The empirical soil 
moisture relationship (f(W1)) is from Foley (1995). The effect of temperature (T) on 
the decomposition rate is adopted from Lloyd and Taylor (1994); εj is the relative 
ability of litter types to decay (Foley, 1995). Above-ground litter decomposition is 
dependent on air temperature, whereas below-ground litter decomposition is related 
to soil temperature.  

1.5 Soil Organic Carbon 

Carbon pool obeys the following formula: 
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where k is an index for the fast (k=1) and slow (k=2) pools of soil; Cs, k the organic 
carbon of soil; and ks, k the decomposition constant. The fraction of decomposed 
litter carbon lost to the atmosphere is represented by fresp (Table 1), with variations 
between biomes (Parton et al., 1987; 1992). The remaining carbon (1- fresp) enters 
the organic pools of soil. Pk is the partitioning coefficients for carbon flowing into 
fast and slow soil pools, with approximately 98.5% and 1.5% of the remainder 
entering fast and slow soil pools, respectively. Under equilibrium conditions, the 
organic carbon of soil is:  
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The control of the climate in the turnover of soil carbon is expressed by a simple 
relationship between the organic decomposition rate of soil, temperature, and soil 
moisture (Parton et al., 1992).  

2. Inverse process 

The crudest approach is exhaustive sampling, requiring the greatest calculation 
time, where all points in a dense grid covering the input space are applied. This 
method is not recommended if the number of parameters is high. An alternative 
method, used for this study, is the Bayesian approach (Gelman et al., 1995) that uses 
"a priori information" B(x) for the input parameter vector x. This information is then 
combined with information provided by a comparison of the model output to the 
observations p = (pi, i = 1, 2, …, m) in order to define a probability distribution 
representing the a posteriori information β(x) of the parameter vector x:  
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where k is an appropriate normalization constant; and L(x) the likelihood function 
that roughly measures the fit between the observed data (pi, i =1, 2, …, m) and the 

predicted data ( ) by the model. If model errors are assumed 

to be independent and Gaussian, L(x) can be written as follows: 
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where S2 is the estimated error variance. Monte Carlo sampling of the Markov 
Chains (MCMC) is the method used to calculate β(x) for the given observational 
vector p. In this study, L(x) is approximated by LH as follows: 
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where pij is the jth biome score of the ith pollen sample,  is the simulated biome 

score of jth to sample i. D
ijp

∧

i measures the similarity between the observed and 
simulated biome scores. S2 can be considered as the variance of the biome scores and 
is used to standardize the LH function. Finally, LH/n is used instead of LH to 
facilitate the comparison of different runs with different numbers of samples.  

Let us consider a multidimensional domain where each dimension represents a 
parameter range, and where a vector of parameters is an element of the 
multidimensional domain. An iterative method of the Metropolis-Hastings (MH) 
algorithm is used, defined in Bayesian statistics context (Gelman et al., 1995), for 
browsing the domain of the parameters according to an acceptance-rejection rule. 

 is denoted as the actual value of the parameter vector at interaction (k) and 

 is a candidate for the next position. If the data collection p=(p
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is known, the acceptance-rejection rule is based on the criteria C (Fahmy, 1997):  
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where P(./p) is the posterior distribution; B the prior distribution; and LH(p) the LH 
function of the (actual/candidate) parameter vector for dataset p. If 

C , then the  value is accepted; u is randomly chosen, 

without preference, between 0 and 1 at each interaction. In practice, the parameter 
vector is initiated according to its prior distribution. A candidate is then chosen 

uxx k
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k
ACTUAL >),( )( )(k
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around the previous value using a multivariate Gaussian distribution. The 
variance-covariance matrix is updated at every k iteration with regard to the 
observed variance-covariance matrix of the last k iteration. The MH algorithm was 
applied to the LH function defined by Eqn.3 with a multivariate uniform distribution 
as a prior of the hyper-parameter. 
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The empirical equations by Guiot et al. (2000) are applied to the changes of 
temperature (ΔT) and precipitation (ΔP) for January and July as well as monthly 
sunshine (S ).  j

             Δ             (36) Tj = ΔTJan + (ΔTJul −ΔTJan )sin[π ( j −1) 12]9 

             ΔPj =1+ ΔPJan + (ΔPJul −ΔPJan )sin π( j −1) 12[ ]         (37) 10 
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where a  and b  are the slopes of monthly precipitation and temperature; cj j j the 
monthly intercepts; and j the month from January to December. ΔTj is applied 
additively and ΔP  multiplicatively to modern values. j
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